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ALGORITHM FOR FORMAL KINETICS  

OF CATALYTIC REACTIONS; APPLICATIONS  

TO TWO STEPS CATALYTIC REACTIONS 

E. Segal� 

abstract: The author presents some elements of graph theory applied in writing rate equations of 
homogeneous catalytic reactions, particularly reactions used in analytical chemistry. Actually the 
kinetic graph technique and the, already classical, quasi steady state approximation (QSSA) are 
alternative procedures which if correctly applied should lead to similar results. Thus, for a given 
catalytic system, one should use the less cumbersome technique which leads without loss of 
rigour and with minimum effort of calculation to the searched rate equation. The paper could be 
considered as a message of the author, who happens to be a professor of chemical kinetics, to the 
analytical chemists interested in one of the most fruitful applications of its teaching field in 
analytical chemistry. 

Generalities 

One of the most spectacular applications of chemical kinetics, particularly of the kinetics of 

homogeneous reactions, in analytical chemistry was the setting up of the kinetic methods of 

analysis. According toYatzimirskii [1] the kinetic methods of analytical chemistry exhibit one 

of the highest sensitivities. The lower theoretical limit of these methods is 10–17mole/l [2]. 
These circumstances might be considered among the reasons for nowaday there were 

developed kinetic methods to determine more than 70 elements of the periodic system [3]. 

In order to determine microamounts of elements by means of the kinetic methods, more 

often redox catalytic homogeneos reactions are used [4]. As indicators various compounds 
which can be easy either oxidized or reduced in presence of traces of elements which act as 

catalysts can be used.Actually in the kinetic methods of analysis one defines an indicator 

compound as the compound whose change in concentration in time is followed in order to 

evaluate the reaction rate. As an example of an indicator reaction we mention the following 

one: 

 ClO3
– + 6I– + 6H+ = Cl– +3J2 + 3H 2O 
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catalysed by Y, Re, Ru, Os, whose indicator compound is the molecular iodine. The 

increase of iodine concentration in solution is used to determine the reaction rate [5].  

Other kinds of reactions like those with generation of polarographic catalytic 

curents,isotopic exchange reactions, substitutions in the inner sphere of coordination 

compounds,enzyme reactions and induced reactions are mentioned as being used in the 

kinetic methods of analysis too [5]. 

Concerning the kinetics of catalytic reactions, in this lecture I am going to present an 

algorithm based on graphs for writing rate equations. Although general, the algorithm is 

going to be applied to catalytic reactions of interest in analytical chemistry. Actually this 

algorithm is an alternative to the QSSA applied to the formal kinetic treatment of the same 

class of catalytic reactions. 

The graph theory originates in the works of Euler [6,7], Kirchoff [6,8] and Cayley [6,9] 

who aimed respectively to solve the famous problem of Königsberg bridges, to calculate 

the current intensity in electrical networks as well as to enumerate the constitutive isomers 

of the alcanes. 

Used at its beginning for recreative purposes, the graph theory found its applications only 

after 1900. Among the beneficial fields one has to mention: electrical engineering, 

automatics, city planning and chemistry [6,10]. 

Christiansen [11] can be considered as a precursor in using graphs in chemical kinetics. He 

applied graphical schemes not yet comprised in the framework of the graph theory, in order 

to describe kinetically complex noncatalytic and catalytic reactions. 

The first application of the graph theory in chemical kinetics in order to describe the 

kinetics of fermentative reactions is due to King and Altman [12]. Volkenshtein and 

Goldshtein extended and applied the graph theory to the kinetic investigation of enzyme 

reactions [13]. Besides the extension of the graph theory to the kinetic analysis of 

multiroute catalytic reactions [14,15], Temkin suggested a procedure to derive rate 

equations for noncatalyric reactions [16]. Snagovskii and Avetisov [17] used graphs in 
order to describe kinetically multiroute reactions which occur on nonuniform surfaces. The 

applicationof the graph theory to the kinetics of heterogeneous catalytic reactions as treated 

in the book of Snagovskii and Ostrovskii[18]should be mentioned too. A review article 

dedicated to the use of graphs in the kinetics of homogeneous as well as enzyme reactions 

is due to Yatsimirskii [10]. One has equally to mention Kiperman`s excellent book [19] 
dedicated to the kinetics of heterogeneous catalytic reactions. Three relatively recent 

contributions in the field, namely the works of Petrov [20], Temkin et al [21] and of the 

author of this article [22], I appreciate as being worth mentioning.  

As far as some fundamentals on graphs needed for application in chemical kinetics, the 
author sends the interested readers to some literature sources [1,21÷25]. In this article we 

should limit only to few definitions strictly necessary for the understanding of the kinetic 

applications.  
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Definitions 

Graph. Graphical representation of a finite set of elements as well as 

the connexions between them. A graph G(X,Y) can be defined 

as a manifold consisting of two  subsets :a nonzero subset, X, 

whose elementa are called vertices, and a  subset, Y, whose 

elements are called edges. 

Directed graph. A graph containing drected (oriented) edges. 

Multiple edge. One from the several edges connecting two vertices. 

Degree of a vertex. Number of edges converging at a vertex. 

Node. Vertex with degree higher than two. 

Branche. Line joining two nodes. 

Chain. A line which crosses the same vertex several times and which 
passes through each  edge only once. 

Cicuit. Chain which begins and ends at the same point. 

Elementary chain. A line which passes through the vertices of the graph(not 

necessary all the  vertices) only once. 

Route of the graph. An alternative succession of vertices and edges connecting the 

first and the last vertices. 

Connected graph. A graph in which any vertex is connected to any other vertex 

through an elementary chain. 

Tree. Connected graph witout circuits. 

Spanning (maximal) tree. Tree which consists of all the vertices of a graph connected 

with arcs. 

Cyclomatic number (υ). The minimum number of edges which have to be removed 
from a connected graph in order to turn into a tree. 

 1p bυ= − +  (1) 

where p is the number of edges and b is the number of verices. The cyclomatic number 

equals the number of independent circuits (routes). 

The extent of the graph. The product of edge sizes in the graph. 

The extent of the cycle. The product of edge sizes in the circuit. 

Basis. Any vertex of the graph considered as initial. 

Basic tree. Chain passing through the vertices toward the basis and with 

the end in the basis. 

Magnitude of the graph's route. The product of successive edges (multiple edges in the 
given  direction should be added) 

Magnitude of the tree. The product of the constitutive edges. 
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Determinant of the basis. The totality of all the possible trees directed to the basis and 

crossing all the vertices. This is obtained by adding the 

multiple  edges directed toward the basis and by multiplying 

the successive ones. 

Algorithm for reaction rate calculation 

In the following, monoroute catalytic reactions with linear mechanism (a linear mechanism 

consists in linear elementary steps characterized by only one active center as reactant) are 

going to be considered. To a given mechanism one associates a graph with the active 

centers in the vertices and with the edges labelled with the elementary steps weights 

(frequencies). The frequency of the elementary step,ω, is defined as the ratio between the 
rate of the elementary step and the concentration of the active center attending it. 

Vokenshtein and Goldshtein [13] derived the following relation between the concentrations 

of active centers attending steps i and j, Xi and Xj, and the basic determinants corresponding 

to the vertices of Xi and Xj, Di and Dj. 

 i i

j j

X D

X D
=  (2) 

whence it is easy to obtain: 

 
j j

i i

X D

X D
=

∑ ∑
 (3)  

Relation (3) was derived using a rule from electrotechnics known as Mason's rule [26,27]. 

In the kinetic calculations for homogeneous catalytic reactions one considers that the total 

cocentration of the active centers equals tne concentration of the catalyst i.e., .Under such 

conditions relation (3) turns into: 

 
j

j k

i

D
X c

D
=
∑

 (4) 

Taking into account that the rate of a stage (two reversible elementary steps) is given by the 
difference: 

 s sr r r−= −  (5) 

as well as the obvious relations: 

 s s sr X= ω  

where sω is the frequency of the step s, the rate (5) becomes: 

 s s s sr X X− −= ω −ω  (6) 

or expressing XS and X–S taking into account relation (4), it follows that: 
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 
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 
 ∑ ∑

 (7) 

This is the searched formula for the calculation of the reaction rate. 

Taking into account these considerations, the procedure to derive rate equations for 

monoroute homogeneous catalytic reactions comprises the following steps: 

1. Write the reaction sequence consisting in linear steps or stages. 

2. Draw the representative graph. 

3. Calculate the determinants of bases corresponding to the vertices of the graph. 

4. Apply formula (7) at least for one stage of the sequence in order to obtain the rate 

equation. 

People less familiar with kinetic graphs should check the result by calculating in the same 

way the reaction rate for other stages or steps. Obviously the same rate equation should be 

obtained. 

Examples 

Once the algorithm is known, we are going to show how the chemist involved in kinetic 

procedures of analysis can relatively easy write rate equations by means of graphs. 

Two step reactions .Among the most simple reactions which can be treated formal-

kinetically by help of graphs one has to mention the two step homogeneous catalytic 

reactions. The results obtained by means of this procedure support an easy comparison with 

those obtained by applying the QSSA or by a treatment which suppose an equilibrium 
followed by a rate determining step. Two step catalytic reactions are important by 

themselves, many catalytic reactions occurring according to such a simple mechanism. 

Besides it can be demonstrated that the kinetic treatment of more complicated multistep 

reactions can be reduced, under given conditions, to the kinetic treatment of two step 

reactions [28]. 

In Table 1, rate equations obtained for the two step reactions, A + B = AB and AB = A + B, 

by means of graphs, by using the QSSA and by means of the equilibrium followed by a rate 

determining step procedure(the last one was for reversible first stages) are compared [29]. 

According to the recommendations from the previous section we give in column 1 the two 

step mechanism, the representative graph in column 3, the basic determinants in column 4 
and the rate equations in column 5.These could be easily be compared with the so called 

classical rate equations(column 2) obtained by means either of an equilibrium stage 

followed by a rate determining step (the first two lines of the tables) or using the QSSA 

approximation. By looking at the rate equations one can notice that if the second step is 

considered as rate determining the classical procedures and that based on the graph theory 
lead to identical results. Thus, the graph treatment is a relatively simple alternative to the 

classical ones and sometimes is preferable to them due to its simplicity. 
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Some catalytic redox reactions used frequently in the kinetic methods of analysis are 

actually two step reactions. Considering for example the catalytic oxidation of iodide by 

halates [10] using vanadium compounds as catalysts, an oxidation of vanadium (IV) to 

vanadium (V) by halate and a reduction of vanadium (V) to vanadium (IV) by iodide occurs 
alternatively. It can be easily shown that such a reaction can be represented by a two step 

mechanism and by the corresponding graph [10] which can be treated from the kinetic 

standpoint similarly to those previously shown. 

Another reaction which is worth mentioning is the catalytic decomposition of hydrogen 
peroxide by the coordination compounds of nickel with monoethanolamine [30] which 

occurs according to the two step mechanism: 

 
( ) ( )

( ) ( )

2 2

2 2 2 2

2 2

2 2 2 2 2 2

Ni MEA H O Ni MEA H O

Ni MEA H O H O Ni MEA +2H O+O

n n

n n

+ +

+ +

+ ⋅

⋅ + →

�
 

and which is described by a sheme which is relatively similar to that given in the second 

row of table 1.Under such conditions one can directly write the rate equation: 

 2 2
2+

2 2 2 2

2
1 2 H O

Ni(MEA)
1 H O 1 2 H O

n

k k C
r C

k c k k c−

=
+ +

 (8) 

Which is quite similar to that obtained by means of QSSA. 

Conclusions  

The use of graph in kinetic analysis offers simple rigorous and efficient procedures to write 

kinetic equations. In many cases such procedures allow to bypass the cumbersome 
calculations required by QSSA. 
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