TRANSFERENCE OF AMPHIPHILIC MOLECULES FROM A
FLAT INTERFACE TO A FINITE SYSTEM BY CONVECTIVE
DIFFUSION

P. Contreras *, C. Podina ** and Mihaela Olteanu **

An expression of transference of amphiphilic molecules in a finite system has been derived. This
effort completes the equation presents in the literature of colloids that were written for free
diffusion, semi-finite systems. The processes occur from a flat interface to a bulk by convective
diffusion. The partial differential equation of Fick’s second law was converted by Laplace
transforms in an ordinary equation and thus an equation of concentration as a function of time #
and position x was obtained. This equation permits to obtain from values of concentration in the
time, the global and the micellar diffusion coefficients.

Introduction

The phenomenon of molecular transference by convective diffusion, in interface-solution
systems has been subject of diverse studies. Most of them are related with the absorption of
amphiphilic species at liquid-liquid or air-liquid interfaces [1+3]. The process, that is
consequence of the chemical potential gradient, has been described in concordance with the
Fick’s second law equation [4]. Using free diffusion technique as experimental procedure
the diffusion coefficient has been calculated for a semi-finite system [5].

Results and Discussion

In this work an equation for a finite system was obtained from the Fick’s second law
equation changing the boundaries conditions. The expressions give us the possibility to
obtain concentration variations in a system of known length. The model is illustrated in the
Fig. 1, a monostrate of molecules organized and oriented that occupy the available
interfacial area of constant concentration C;, in contact with a bulk of concentration C,. The
bottom of vessel, where the concetration is zero, is separated a distance x=/ from the
interface. We mimic the phenomena of transference interface-bulk that occurs in a simple
test tube containing two immiscible phases (usually oil and water), with amphiphilic
molecules concentrated initially in one of the phases.

Experimental values of C,, obtained from a radioactive tracer technique was used to test
the equation applicability [6].
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INTERFACE, X=£{
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Fig. 1: Model of the finite system proposed, a flat interface containing a monostrate
of concentration C;, at x=I, in contact with a bulk solution of concentration Cy, of length 1.
The transference occurs by convective diffusion D, to the bulk.

Equation of convective diffusion from the interface

Mass balance and equations of variation for a finite system were the started points in this
work. Our mathematics treatment has had it base in the conservation of mass expressed in
terms of the equation of continuity [7].

Considering the balance for a component 4, at any volume element fitted in the space, in
aqueous we have:

ot

+(V-N,)=0 (1)

where, C, is the total molar concentration of A, V Nabla operator and N, the density of
molar flow of A. according with the first Fick’s law N, in stationary coordinates can be
expressed as:

N, =x,(N, + Ng)-CDVx, 2)

where x, is the molar fraction of A (Ca/C), Np the density of molar flow of B (the solvent),
C the total molar concentration, D the translation diffusion coefficient of A in B. The first
term of the eq. 2, represents the vector that results of the fluid global movement. The
second one represents the diffusion in parallel with the global flow,

% (V-Cyv)= (v : CDV%AJ 3)
and
a;’* +(vwc,)=DviC, (4)

Finally the equation expressed in rectangular coordinates is:
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Convection currents are particularly significant only in the vicinity of the interface due to
the Marangoni instabilities [8], and then eq. 5 is transformed by simplification of the
velocity terms. In general, it would be a process occurring in three dimensions, but the
experimental devices allow a concentration gradient to exist in one direction only. It can be
reduced to a one-dimensional problem and will be treated as such here. Changes of the
concentration are considered only in x directions.

Consequently the eq. 5 is,

aC, o*C,
o - D[ ox? j ©)

In our case boundary conditions for 0 <x </, > 0 are:

Calx.0)=Cy,

Ca(0,H)=0
Call, )= Ciy
where C Ay * is the initial concentration of A in the aqueous phase, C,(0,7) is the

concentration on the bottom of the tube that always is taken as zero and Cj, the interfacial
concentration.

This partial differential equation of convective diffusion is converted in an ordinary
equation by the Laplace transforms £ and resolved as follow [9,10]
Dd2cA d2cA scy  Ca,

scpy —Cy(x,0)= P R (7)

where s is the Laplace parameter, cy = ca,5) = £ {Ca (x, ©)} [4]. From border conditions
and by Laplace transform, if ca,,5) = 0 and ca(/, s) = Cin/s, we have the general solution
with a and 3 as the constant of the equation:

C

¢ =acoshv/s/Dx +Bsinh/s/ Dx +—22 (8)
s
where B is zero due to the condition established above and then o
c, -C
o= in Ag (9)
scosh+/s/ DI
Thus, the eq. 8 is,
Ao cosh+/s/ Dx
CA:_+(Cin_CA0)— (10)
s scosh+/s/ DI
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The inverse of the first term is C Ay * the inverse of the second one, without the term
(Cin = Ca, ) is

Lyj' e’ cosh\/s/Dx
2mi <, scoshws/ DI

that is equal at the sum of all the integer rest, in the simple poles present:
s=0, Ns/Dl=(n—(1/2))ni n=0,£1£2, ...

2 2
s=0, s:—w n=0,1,2,3,..
41

where: the rest in s=0 is lim( ) ¢ cosh s/ Dx
50 scosh+/s/ DI

(11)

2 2
the restin s :—W:% is
lim (s, ) e cosh/'s/Dx | _
58, "\ scosh+/s/ DI

lim } lim e™ e" coshs/Dx | _
5SS, cosh\/s/D S8, N
lim {lim e* cosh/s/ Dx }:
575 (senh\/S/ DI Xl /2\/Ds)

_ 4(_ l)n e*(anl)znthMlz cos (2n —I)Ttx
(27 =1} 2

and we obtain the solution using L’Hospital,

4(Cm B CA() )i (_ 1)n e—(Zn—l)znthM/z cos (21’1 — I)TEX (12)
T = 2n-1 2]

S8, K

Culxt)=C,, +

This equation permits us to calculate the concentration of A as a function of x and ¢, for a
system of finite length / and a diffusion coefficient D.

Curves of concentration as a function of the distance x can be obtained for a value of D, in
each period of time (Fig. 2).
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Fig. 2: Theoretical concentration of the acid in the aqueous phase as a function of position x
in the tube, for different times. Hypothetical diffusion coefficient D = 0.005004 cm*h and

interfacial concentration C; = 0,0023 mol/cm’.

From this set of values is possible to obtain the mean concentration. After, a family of
theoretical curves is drawn (Fig. 3), changing the diffusion coefficient values. If on these
curves, the experimental value of concentration changes versus ¢ for one finite system
problem is plotted, the values of D as a function of ¢ are estimated in the intersection points

(Fig. 3).
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Fig. 3: Theoretical acid concentration vs. time for different coefficient of diffusion.
Experimental concentration values have been represented by the symbol ( ®).

In the case of amphiphilic molecules, D represents the global diffusion coefficient, after the
critical micellar concentration (CMC). There, we have the contribution of monomer and
micelle aggregates. Thus, if we know the monomeric contribution it is possible to calculate

the micellar contribution D, from D.
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Conclusions

A mathematical expression for the transference of amphiphilic molecules from a flat
interface to a finite system has been derived. With this equation is possible to obtain
theoretical curves that together with experimental values of concentration changes as a
function of time, give us the diffusion coefficient D. Additionally, the micellar diffusion

co¢

fficient D,,,, can be obtained for a system after the CMC.
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