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APPLICATIONS OF THE CATASTROPHE THEORY (CT) 

IN THE STUDY OF THE SCF THEORY AND METHOD 

V. Scridonesi-Calin  and A.D. Mihailescu 

abstract: The energetic SCF(selfconsistent field) functionals (the SCF energy(I), the rotational 

increment of the SCF energy(II) and the rotational gradient of of SCF Lagrange multipliers(III)) 
are fitted by the catastrophe structures(CSs), allowing applications of the of the catastrophe 

theory(CT) in the study of the SCF theory and method. Through (I)-(II), in the SCF theory, rise 

qualitatively distinct problems by CT. They reduce themselves to a unique general problem with 
the stages: (a) the finding of the polynomial form (I)-(III) possibly to be approximated by the 

catastrophe potentials(CPs) (or the unfoldings of the catastrophe); (b) the identification of the 

parameter α of the behaviour(or state) for (a); (c) the inducing of the k-jets and the corresponding 
CPs; (d) the research of the extremum (minimum) of the critical points of CSs that fit the 

hypersurfaces (I)-(III); (e) the computation and analysis of the integral quadratic error as a 

measure of the degree of the fitting of (I)-(III) by the CSs; (f) the interpretation of the general 
results (a)-(e) by the peculiarity of the SCF problem risen by (I)-(III). 

key words: scf theory and method; catastrophe theory; catastrophe structures; catastrophe 
potentials; scf energy; rotational increment of scf energy; rotational gradient of scf Lagrange 

multipliers; scf functionals fitted by CSs; parameter α of behaviour (or state); parameters of 

control; k-jets; hipersurfaces in Sα Sc; integral quadratic error 
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1. Introduction 

The principal physical-mathematical problems of the SCF theory (and the method) 

applied to the multielectronic quantum systems (atomic, molecular etc.)[1-3,17] are treated 

by (or connected to) the functionals: the SCF energy(ESCF) (I), the rotational increment of 

the SCF energy (ΔESCF) (II) and the rotational gradient of the SCF Lagrange 

multipliers [(Δeij)SCF] (III), the last, at hermiticity, leading to the orbital energies ({ei=-eii; 

i=j}). The SCF energetic functionals (I)-(III), all being dependent on the set of the basic 

monoelectronic functions (2) (corresponding to the treated quantum electronic system), may 

be prepared for their approaching by the Catastrophe Theory(CT) [9-11]. The structure of 

this approach is (a)-(f) (see the abstract of this paper) and solves a unique general 

                                                           

  University of Bucharest, Faculty of Chemistry, Dept. of Physics and Applied Mathematics, Bd. Regina 

Elisabeta 4-12, 030018 Bucharest, Romania corresponding author e-mail: V.Scridonesi@yahoo.com 

 

Department of Physical Chemistry 

4-12 Regina Elisabeta Blvd, District 3, Bucharest 

phone: +40-21-3143508; fax: +40-21-3159249 

ISSN: 1844-0401 

ARS DOCENDI PUBLISHING HOUSE 

Sos. Panduri 90, District 5 Bucharest 

phone/fax: +40-21-4102575 

e-mail: arsdocendi@yahoo.com  

 



22 V. SCRIDONESI-CALIN  A.D. MIHAILESCU 

problem. The SCF problem as: the computation of the SCF energy and of the the orbital 

energies {ei}, the SCF convergeance [22], the SCF stability and instability, the number of 

the SCF solutions, the hermiticity of the SCF Lagrange multipliers etc are directly 

connected to (I)-(III). The approach by the CT will take into account the classic SCF result 

[1-8,23] and the nonclassic result too, obtained by the first author [18-22]. 

2. The general polynomial form FJ of the functionals (I)-(III) 

The all energetic SCF functionals (I)-(III), in the SCF theory (and the method) [1-

4,8,12,13,17] being dependent on the set (2) of the basic monoelectronic functions 

corresponding to a quantum system with N electrons, may be transformed in polynomial 

dependences of the type: 

 FJ=f(α,{cm
J
; m=1,2,…nJ})      (J {I,II,III}≡J) (1) 

In (1) α represents the unique parameter of the behaviour (or state) defining the 

monodimensional space of the behaviour (or state) Sα, and {cm
J
} a number nJ (J J) of the 

control parameters defining the multidimensional space of the control Sc. The control 

parameters are dependent on the basic monoelectronic functions: 

 {|φi›, i=1,2,…N} (2) 

In the SCF general and peculiar cases {cm
J
} representing the combinations both of atomic 

and molecular integrals [18-22]. The parameter α is obtained: or (A) after a localisation of 

the representative quantum state point Ψ({|φi›}) (Ψ – the wave function of the quantum 

system) on the sphere of the normalization [7,18], if J=I; or (B) after a unitary 

transformation of the type 2x2 [5,6] plane rotation [16] of the pairs of the functions (2), if 

J=II and J=III [19-21]. 

2.1. The polynomial form FI 

The SCF functional of the energy, ESCF(I), dependent on (2), by Ψ, we consider it of the 

same form [7,18]: 

 ESCF=E1sin2α+E2cos2α+E3sinα+E4cosα+E5 (1´) 

Corresponding to a helium-like quantum system treated in the multiconfigurational 

SCF(MC-SCF) variant. The parameter α, in the case (A), allows the rewriting of (1´): 

 FI≡ESCF=c1
I
x

2
+c2

I
xy+c3

I
x+c4

I
y+c5

I
 (1I) 

with {cm
I
; m=1,2,…5} combinations of the SCF energy coefficients ({Ei; i=1,2,…5}) [18] 

and  

 x=sinα; y=(1-x
2
)

2
 (α [-π; π] or x [-1; 1]) (3) 

2.2. The polynomial form FII 

The SCF energy rotational increment, ΔESCF (II), dependent also on (2) may be obtained 

applying the pairs of the functions {|φi›, |φj›} a 2x2 [5,6] plane rotation [16] of the angle α. 

The general form of ΔESCF is formally obtained the same: either by generalising [19,20] the 
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peculiar expressions ΔESCF (atomic [4,8] and molecular [14,15]), or by starting from the 

general expression of the SCF functional (I) [21]. For a multielectronic system of the closed 

shell type in the MC-SCF variant, (II) has the condensed form: 

 FII≡ΔESCF=c1
II
x

4
+c2

II
x

3
y+c3

II
x

2
+c4

II
xy+c5

II
 (1II) 

with {cm
II
; m=1,2,…5} specified in [19,20], x and y defined by (3), but with α newly 

specified (B). The formal difference between (1II) obtained in [18] and the one obtained in 

[19,20] is c5
II
=0 in [18], nonsignificant in the general treating by the CT of (1II). 

2.3. The polynomial form FIII 

The rotational gradient of the SCF Lagrange multipliers, (Δeij)SCF(III), obtained as (II) also 

by a 2x2 plane rotation of α angle (B), according to [12], has a complicated mathematical 

expression that in the condensed form is the simple polynomial [21]: 

 FIII≡(Δeij)SCF=c1
III

x
2
+c2

III
xy+c3

III
x+c4

III
y+c5

III
 (1III) 

The coefficients {cm
III

; m=1,2,…5} from (1III) have the explicit expressions given in [21], x 

and y defined by (3) and α newly specified for J=III. From (1I) and (1III) we notice the 

formal identity of the polynomial dependences ESCF and (Δeij)SCF a significant fact for (I) 

and (III) which represent SCF energies: (I) the SCF total energy, respectively (III) the SCF 

orbital energies (at the accomplishment of the hermitian condition of the SCF lagrange 

multipliers). This formal identity makes (1I) and (1III), in this application of the CT, to 

appear directly as a unique problem. For the increment ΔESCF, the appearance of the terms 

of 3
rd

 degree, respectively 4
th

 degree in x is significant, contributing to the qualitative 

separation of (II) from (I) and (III), even when we will apply the CT at the fitting of the 

hypersurfaces (1J) (J J) by the CSs. 

2.4. The general polynomial form FJ 

The dependences, formally identical (1I) and (1III), may appear in fact as the peculiar cases 

of a polynomial dependence generalising (1II): 

 FJ=f(α,{Cm
J
; m=1,2,…7})=C1

J
x

4
+C2

J
x

3
y+C3

J
x

2
+C4

J
xy+C5

J
x+C6

J
y+C7

J
 (4) 

from which (1I) and (1III) are easily obtained by: 

 C1
J
=C2

J
=0 (J=I, III) (4´) 

and for (1II): 

 C6
J
=C7

J
=0 (J=II) (4´´) 

In a multidimensional space Sα Sc, (4) represents a hypersurface whose topological 

behaviour may be fitted by the CSs, if (4) (or (1J) (J J)) is approximated by the catastrophe 

potentials (CPs) (or the unfoldings of the catastrophe). Because the behaviour (or α state) 

parameter α defined by (3) and (A) or (B) is unique, 

 Corank(FJ)=1 (J J) (4´´´) 

all the CSs which will fit (4) (or (1J) (J J)) will be of the cuspoid type [9-11] (see index). 
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3. The application of the CT through the fitting 

of the energetic SCF functionals (I)-(III) by the CSs 

Aiming the application of the CT [9-11] at the nonclassic study of the classic SCF theory 

and method, one will proceed to the fitting of the functionals (I)-(III) (with analytical 

explicit forms (1J) (J J)) of the generalized form by eliminating the upper index ―J‖ from 

(4), resulting:   

 FJ=f(α,{Cm; m=1,2,…7})=C1x
4
+C2x

3
y+C3x

2
+C4xy+C5x+C6y+C7 (5) 

3.1. The induction of k-jets FJ
(k)

 ((k)=2n(n=0; 1,2,3)) 

If we take into account the definition (3) of the behaviour (or state) parameter α and we 

develop y in the Taylor series [9-11]: 

 y=(1-x
2
)

1/2
=1-(0.5x

2
+2

-3
x

4
+2

-4
x

6
+…) (6) 

then (5) leads to the k-jets of the orders (k)=2n(n=0; 1,2,3), if we cut off the expression (6) 

from the term in x
8
: 

 FJ
(0)

=aJ
(0)

x
4
+bJ

(0)
x

3
+cJ

(0)
x

2
+dJ

(0)
x+eJ

(0)
 (7) 

where aJ
(0)

=C1, bJ
(0)

=C2, cJ
(0)

=C3, dJ
(0)

=C4+C5, eJ
(0)

=C6+C7 (7´) 

 FJ
(2)

=aJ
(2)

x
5
+bJ

(2)
x

4
+cJ

(2)
x

3
+dJ

(2)
x

2
+eJ

(2)
x+fJ

(2)
 (8) 

where aJ
(2)

=-0.5 bJ
(0)

, bJ
(2)

=aJ
(0)

, cJ
(2)

=C2-0.5C4, dJ
(2)

= C3-0.5C6, eJ
(2)

= dJ
(0)

 and fJ
(2)

=eJ
(0)

 (8´) 

 FJ
(4)

=aJ
(4)

x
7
+bJ

(4)
x

5
+cJ

(4)
x

4
+dJ

(4)
x

3
+eJ

(4)
x

2
+fJ

(4)
x+gJ

(4)
 (9) 

where aJ
(4)

=-2
-3

bJ
(0)

,
 
bJ

(4)
=-0.5(C2+2

-2
C4), cJ

(4)
=C1-2

-3
C6, 

 dJ
(4)

=cJ
(2)

, eJ
(4)

=dJ
(2)

, fJ
(4)

=dJ
(0)

 and gJ
(4)

=eJ
(0)

 (9´) 

and FJ
(6)

=aJ
(6)

x
9
+bJ

(6)
x

7
+cJ

(6)
x

6
+dJ

(6)
x

5
+eJ

(6)
x

4
+fJ

(6)
x

3
+gJ

(6)
x

2
+hJ

(6)
x+iJ

(6)
 (10) 

where aJ
(6)

=-2
-4

bJ
(0)

,
 
bJ

(6)
=2

-2
bJ

(4)
, cJ

(6)
=-2

-4
C6, dJ

(6)
=bJ

(4)
, 

 eJ
(6)

=cJ
(4)

, fJ
(6)

=cJ
(2)

, gJ
(6)

=dJ
(2)

,  hJ
(6)

=dJ
(0)

 and iJ
(6)

=eJ
(0)

 (10´) 

3.2. The catastrophe potentials (CPs) corresponding to the k-jets FJ
(k)

 

In order to put into evidence the catastrophe potentials (CPs) (or the unfoldings of the 

catastrophe), the k-jets of the zero order (7) and the two order (8) need a change of the 

variable, while the fourth order k-jets (9) and the sixth order (10) lead directly to the CPs 

searched through the fitting of the hypersurface (5) (or (4)) by the CSs. 

3.2.1. The simple cusp CP 

By performing the change of the variable: 

 x=z-bJ
(0)

/4aJ
(0)

=-z-C2/4C1 (11) 

the k-jet of the zero order (7) leads to the simple cusp CP [9] (see index): 

 Vsc=ascz
4
+bscz

2
+cscz+dsc (12) 
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where the control parameters asc, bsc, csc and dsc could be easily identified if one substitutes 

(11) in (7) and identifies, respectively z-the behaviour (or state) parameter. 

3.2.2. The swallowtail CP 

By the change of t he variable: 

 x=z-bJ
(2)

/5aJ
(2)

=z+(2/5)C1/C2 (13) 

in (8), the k-jet of the second order (8) takes into evidence the swallowtail CP [10] (see 

index): 

 Vs=asz
5
+bsz

3
+csz

2
+dsz+es (14) 

where the control parameters as, bs, cs, ds and es could be easily identified by (13) in (8), 

respectively z-the behaviour (or state) parameter. 

3.2.3. The Wigwam CP 

For k-jet of the fourth order, (9) represents just the wigwam CP [11] (see index): 

 Vw=awx
7
+bwx

5
+cwx

4
+dwx

3
+ewx

2
+fwx+gw (15) 

with the control parameters  aw, bw, cw, dw, ew, fw and gw identical to those of (9) ( not being 

necessary the change of the variable), respectively x-the behaviour (or state) parameter. 

3.2.4. The fold butterfly product CP 

By (10) we have, directly, the fold butterfly product CP (or simple cusp swallowtail) 

[10,11] (see index): Vfb=afbx
9
+bfbx

7
+cfbx

6
+dfbx

5
+efbx

4
+ffbx

3
+gfbx

2
+hfbx+ifb (16) 

with the the control parameters identical to those of (10), respectively x-the behaviour (or 

state) parameter. 

3.2.5. Conclusion 

The hypersurface (5) (or (4)-the generalization of the hypersurfaces ((1J) (J J)) 

representing the energetic SCF functionals (I)-(III) may be fitted by the CSs whose CPs are 

of the cuspoid type: simple cusp (12), swallowtail (14), wigwam (15), and fold butterfly 

product (16), if the expansion in the Taylor series (6) cuts itself off from the term in x
8
. 

3.3. The catastrophe Manifolds corresponding to the CPs (12), (14)-(16) 

The catastrophe manifolds (with the help of which the extremum points will be identified) 

corresponding to the CPs identified in the paragraph 3.2 are obtained, in turn by 

 Vi
n
(n)=∂Vi(n)/∂n=0 (n=z or x), as: (17) 

 Vsc
z
(z)=4ascz

3
+2bscz+csc=0 (simple cusp) (18) 

 Vs
z
(z)=5asz

4
+3bsz

2
+2csz+ds=0 (swallowtail) (19) 

 Vw
x
(x)=7awx

6
+5bwx

4
+4cwx

3
+3dwx

2
+2ewx+fw=0 (wigwam) (20) 

and 

 Vfb
x
(x)=9afbx

8
+7bfbx

6
+6cfbx

5
+5dfbx

4
+4efbx

3
+3ffbx

2
+2gfbx+hfb=0 (fold butterfly) (21) 



26 V. SCRIDONESI-CALIN  A.D. MIHAILESCU 

The nature of the extremum points of the catastrophe surfaces is detected by the sign of the 

hessian: 

 Vi
nn

(n)=∂
2
Vi(n)/∂n

2
 (n=z or x) (22) 

in the extremum points obtained by (17) through (18)-(21), respectively the critical points 

obtained by the annulment of the hessian (22). In the effective computations, the results of 

this paragraph will be used mostly for (II). For (I) and (III), (18)-(21) will be particularized 

in the following.  

3.4. The CSs which fit (I) and (III) 

According to the relation (4´), the hyper surface (5) (or (4)) is particularized to (I) and (III), 

if the terms of the 3
rd

 and 4
th

 degree in x are annulled. In this case, (1I) and (1III) are reduced 

to the hypersurface:  

 FI,III=ax
2
+bxy+cx+dy+e (23) 

with {a,b,c,d,e} explained in [18, 21], x and y given by (3). Applying (6) in (23) we obtain 

the k-jets peculiar to the k-jets (7)-(10):  

 FI,III
(0)

=a
(0)

x
2
+b

(0)
x+c

(0)
 (24) 

 FI,III
(2)

=a
(2)

x
3
+b

(2)
x

2
+c

(2)
x+d

(2)
 (25) 

 FI,III
(4)

=a
(4)

x
5
+b

(4)
x

4
+c

(4)
x

3
+d

(4)
x

2
+e

(4)
x+f

(4)
 (26) 

 FI,III
(6)

=a
(6)

x
6
+b

(6)
x

5
+c

(6)
x

4
+d

(6)
x

3
+e

(6)
x

2
+f

(6)
x+g

(6)
 (27) 

with the control parameters specified in [18] for (I), respectively in [21] for (III). 

By a change of the variable of the type: 

 x=z-b
(k)

/(k+1)a
(k)

 (k=2,4,6,) (28) 

(25)-(27) lead to the CSs: fold (k=2), swallowtail (k=4), respectively (k=6), the fold CP 

being given by [9-11,18,21] as : 

 Vf=afz
3
+bfz+cf (29) 

Table 1 The CSs which fit the Functionals (I)-(III) (1I)-(1III). 

                         

k-jet 
ESCF(I) and (Δeij)SCF(III) ΔESCF(II) 

(0) noncatastrophe structure (nonCS) simple cusp 

(2) fold swallowtail 

(4) swallowtail wigwam 

(6) wigwam fold butterfly 

(8)* fold butterfly fold star 

(10)* fold star swallow star 

          *CSs not icluded in the text, which are obtained with (6) containing the term in x8    (k=8), respectively in x8 
and x10 (k=10) 

For k=0, the fitting of the hypersurface (23) is done by a nonCS (24). These results are 

obtained directly too, from (7)-(10), by taking into account (4´). The table 1 synthesizes the 
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results from subparagraphs 3.3 and 3.4 on the CSs which fit (I)-(III) comprising the CSs too 

for k=8 and k=10 nonincluded in the text (see table1). 

4. The integral quadratic error 

The degree of the fitting of the hypersurfaces (I)-(III) ((1I)-(1III)) by the CSs taken into 

evidence in the paragraph 3, my be measured by the integral quadratic error [18-21]:              

  εJ
(k)

=

1

1

|FJ-FJ
(k)

|dx, (k=2n(n=0; 1,2,3); (J J)) (30) 

if we take into account that x [-1,1], when α [-π,π]. Appealing to the relations which 

define FJ and FJ
(k)

 respectively, (30) is transformed into: 

 εJ
(k)

= ε1J
(k)

[C2
J
]

2
+ε2J

(k)
[C4

J
]+ε3J

(k)
C2

J
C4

J
  (k=2n(n=0; 1,2,3) (J J)) (31)  

in which   C2
J 

and
 
C4

J
 are the coefficients of the terms in y from (1I)-(1III), εiJ

(k)
 (i=1,2,3) 

being computed and tabled in [18-21]. It is significant that, for J=I and J=III we have:  

 ε3J
(k)

=0 (32)                                                                                        

and that in the integral quadratic error (31) interfere those coefficients of the functionals (I)-

(III) explained, which contain cosα (according to the relations (1I)-(1III) and (3)). The 

analysis of the integral quadratic error (30) made in [18-21] shows that εJ
(k) 

diminishes while 

the order (k) of the k-jets that fit the hypersurfaces (1I)-(1III) rises setting approximatively at 

k=6. It shows that the optimum fitting is achieved for (I) and (III) by the wigwam CS and 

for (II) by the fold butterfly CS. The same analysis shows that satisfactory results are 

obtained even for the fitting by the CSs corresponding to k=2 for (I) and (III), respectively 

to k=0 for (II). The best results are obtained at the highest k, with a lot of quantity of 

computation and time, but not greater than in the classic SCF procedure. 

5. Discussions 

A debating of the nonclassic results which are obtained for (I)-(III) ((1I)-(1III)), by the 

application of the CT, with classic results existing in the literature, may be realized with a 

less quantity of computation and time, in the case k=2 for (I) and (III) [18,21], and k=0 for 

(II) respectively [19,20]. For k=2, according to the table 1, the hypersurface ESCF(I) (1I) may 

be fitted by the fold CS (29). If (17) is applied to (29) and the obtained equation is solved in 

the case of the quantum system He, two values of α [18] occur which minimize (29), 

according to the number of the SCF solutions obtained classically in [7]. Additionally, the 

minimum values ESCF
(2)

 computed by the CT are in accordance with the classic values 

obtained in [7]. 

With k=0, according to the Table 1, the hypersurface ΔESCF(II) (1I) may be fitted by the 

simple cusp CS (12). By the simple cusp catastrophe manifold (18), and by taking into 

account the definitions of the control parameters and solving (18), value αmin are obtained 

through which one may obtained the nonclassic values ΔESCF
(0)

«ε [19,20], with ε as order of 
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magnitude in accordance with that classically obtained (or pre—established) for the atomic 

and molecular closed shell systems [8,14,15]. We can thus approach nonclassically the MC-

SCF convergence, by the possibility of the establishment of the convergence criteria. 

The non classical study of the hypersurface  (Δeij)SCF(III) ((1I), for k=2), by the fold CS, 

refinds [21] the algebraic conditions [12] of the approximation of the hermiticity of the SCF 

Lagrange multipliers, as a peculiar case of the topological conditions [21] of the 

approximation of the hermiticity. It also allows the nonclassic finding of a  [(Δeij)SCF]min~10
-4

 

Hartree a. u., for the quantum systems methylene and ethylene, in accordance with the order 

of the magnitude from [12,13]. Quantitatively, better results may be obtained by fitting (I)-

(III) by CSs corresponding to k higher [22] with the disadvantage of the increase of the 

quantity of the necessary computation and time. 

Mr. A.D. Mihailescu is the technical author of the present paper through its editing on 

computer. 
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