THE TITRATION OF SOLUBLE SULFUR CONTENT
OF THE INSOLUBLE SULFUR AS RAW MATERIAL
IN THE RUBBER INDUSTRY

S. Neagoe* and M. Hotinceanu

abstract: The aim of present paper is to present a spectral method to determine the amount of soluble sulfur contained in the insoluble sulfur used as raw material in rubber industry. The soluble sulfur extracted in an organic solvent presents an UV absorption band at 263nm.

Introduction

In rubber industry there are used two common polymorphic sulfur forms as vulcanization agent of unsaturated polymers. These two forms are the rhombic sulfur, soluble (S_α) and insoluble sulfur (S_μ) respectively.

Both S_α and S_μ powders can cause dust explosions (static, spark, etc.) and hence they are oil-coated form 1.5-20% oil. In our polymer the pre- dispersed sulfur is bound, these hazards being in this way completely removed.

Both S_α and S_μ are difficult to mix and a good dispersion of sulfur powder in mixing is not achieved.

S_α exists as eight atom ring:

![Salpha](image)

and S_μ is a polymeric $[S_8]_n [1,2]$ which is an unstable form and even at ambient temperature S_μ tends to revert to S_α. This process is accelerated by the temperature rising. At 50°C, S_μ will revert to S_α with 1% per day and it will revert even faster in presence of alkaline materials (hence insoluble sulfur) powders are not recommended to be weighed and mixed with such chemicals. Polymer bound in soluble sulfur does not have these problems.

* Oil-Gas University Ploiesti, Bd. Bucuresti 39, 2000, Ploiesti

Copyright © Analele Universității din București
At moulding temperature, S_μ reverts totally to S_α and behaves similarly in the sulfur crosslink mechanisms. There are used stabilizers to delay this reversion.

Practically, the rubber chemists with an eye on cost savings usually opt for Semi-EV cure system i.e. S dosage of 1.5±0.2 PHR. This is very close to the maximum solubility of 1.5 PHR S in NR/SBR/BR at 25°C. If our S-80 is used to replace S at 1:1 weight basis, then the actual active S dosed is only 1.2 PHR in such Semi-EV cure systems and in most cases, no S bloom is encountered. For supplementary safety, we recommend the use of our economical ISE-60 or ISE-75. Factories are also encouraged to stock with both our S-80 and IS-65 grades and they can experiment with whatever combinations of these substances to suit their formulations.

The use of insoluble sulfur in rubber industry involves many aspects, such as oil content, density, acidity and soluble sulfur content. Sulfur and its compound titration is very present in chemical literature [3,4,5,6,7,8].

Experimental

Reagents

All reagents used were of analytical purity (crystallized sulfur, n-hexane).

Apparatus

The spectra were recorded using n-hexane as solvent and a Jasco V-550 UV-VIS spectrometer. 25cm3 measuring bottle has also been used. A standard reference solution was prepared solving crystallized sulfur in n-hexane with 0.4g/l concentration. Diluting this solution with solvent there were prepared the working sample solutions with concentrations comprised within the range 1.06·10$^{-2}$ and 2.55·10$^{-2}$g/l used for calibration curve.

Results and discussion

It was recorded the 200÷450nm absorption spectra using sulfur in n-hexane standard solution. The maximum absorbance was found for 263nm.

The calibration curve was made measuring the absorbance of standard solutions obtained from stock solutions diluted with n-hexane.

Table 1 summarizes the experimental data.

The data from Table 1 were used to plot the calibration curve [19], using the least squares regression:

$$C=-0.000154+0.038715 \cdot A_{263}$$

The obtained correlation coefficient is $r=0.998983$ showing a good curve linearity.

The calculated detection limit is 1.1·10$^{-3}$ g/l sulfur and the determination limit is 2.2·10$^{-3}$ g/l. It was calculated soluble sulfur in insoluble sulfur rate using the relationship

$$C_2=C\cdot100/C_q$$
C_2 is the concentrated value calculated using the eqn (1) and C_p is the concentration of the sample assumed from calibration curve whose absorbance is fitted in eqn (1).

Table 1. The calibration curve for n-hexane as solvent.

<table>
<thead>
<tr>
<th>Nr. crt.</th>
<th>Concentration (g/l)(10^{-2})</th>
<th>Abs (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.06</td>
<td>0.275</td>
</tr>
<tr>
<td>2</td>
<td>1.18</td>
<td>0.310</td>
</tr>
<tr>
<td>3</td>
<td>1.32</td>
<td>0.350</td>
</tr>
<tr>
<td>4</td>
<td>1.44</td>
<td>0.375</td>
</tr>
<tr>
<td>5</td>
<td>1.57</td>
<td>0.405</td>
</tr>
<tr>
<td>6</td>
<td>1.69</td>
<td>0.435</td>
</tr>
<tr>
<td>7</td>
<td>1.82</td>
<td>0.475</td>
</tr>
<tr>
<td>8</td>
<td>1.94</td>
<td>0.510</td>
</tr>
<tr>
<td>9</td>
<td>2.07</td>
<td>0.550</td>
</tr>
<tr>
<td>10</td>
<td>2.19</td>
<td>0.570</td>
</tr>
<tr>
<td>11</td>
<td>2.31</td>
<td>0.600</td>
</tr>
<tr>
<td>12</td>
<td>2.43</td>
<td>0.625</td>
</tr>
<tr>
<td>13</td>
<td>2.55</td>
<td>0.665</td>
</tr>
</tbody>
</table>

Interference study

a. Refined oil influence as insoluble sulfur stabilization factor

It was utilized extra refined mineral oil (soluble in n-hexane) for the preparation of synthetic mixtures of soluble sulfur with different proportions. The spectra were recorded and the soluble sulfur matter was calculated from eqn (1).

Table 2 presents the obtained results.

Table 2. Influence of refined oil on the soluble sulfur determination.

<table>
<thead>
<tr>
<th>Nr. Crt.</th>
<th>C_{soluble}(g/l) (introduced)</th>
<th>C_{oil}(g/l) (introduced)</th>
<th>C_{oil}/C_{s}</th>
<th>C_{found}(g/l)</th>
<th>C(g/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0269</td>
<td>0.0135</td>
<td>0.51</td>
<td>0.0273</td>
<td>0.0004</td>
</tr>
<tr>
<td>2</td>
<td>0.0202</td>
<td>0.0202</td>
<td>1.00</td>
<td>0.0208</td>
<td>0.006</td>
</tr>
<tr>
<td>3</td>
<td>0.0162</td>
<td>0.0242</td>
<td>1.45</td>
<td>0.0169</td>
<td>0.0007</td>
</tr>
<tr>
<td>4</td>
<td>0.0135</td>
<td>0.0269</td>
<td>1.99</td>
<td>0.0140</td>
<td>0.0005</td>
</tr>
</tbody>
</table>

It is obvious that the influence of the refined oil on soluble sulfur graduation is insignificant (compare C_{soluble} with C_{found})

b. Influence of temperature

It was followed the influence of the operating temperature on soluble sulfur dissolution. Five sample sets were prepared with the same concentration of sulfur solved in n-hexane at the room temperature and at 60°C. After cooling of the samples until the room temperature is reached, their absorbance has been recorded and the sulfur concentration calculated.
The Table 3 presents the average concentrations for each temperature.

Table 3. Temperature influence on the soluble sulfur determination.

<table>
<thead>
<tr>
<th>No.</th>
<th>T(°C)</th>
<th>(C_{\text{soluble}}) (g/l) (\times 10^{-2})</th>
<th>(C_{\text{found}}) (g/l) (\times 10^{-2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Room temperature</td>
<td>2.100</td>
<td>2.110</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>2.030</td>
<td>2.010</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
<td>2.180</td>
<td>2.180</td>
</tr>
<tr>
<td>4</td>
<td>50</td>
<td>2.260</td>
<td>2.263</td>
</tr>
<tr>
<td>5</td>
<td>60</td>
<td>2.380</td>
<td>2.282</td>
</tr>
</tbody>
</table>

The Table 3 reveals a gently increase of soluble sulfur content with temperature.

It is recommended that the dissolution of the sample which contains soluble and insoluble sulfur at maximum 50°°C do no affect the soluble sulfur stability.

c. **Error calculation**

The standard deviation was calculated from the formula:

\[
S = \sqrt{\frac{\sum (\Delta C_{\text{found}})^2}{n}} = \left(\frac{0.16}{6}\right)^{\frac{1}{2}} = 0/16
\]

(3)

The variation coefficient, \(\sigma\) is:

\[
\sigma = \frac{100S}{n} = 100 \cdot \frac{0.16}{6} = 2.7\%
\]

(4)

It was calculated P=95% and the trust interval for \(C_{\text{found}}\) is of ±0.2%.

d. **Proposed protocol**

It is measured an amount of approximately 0.01g of sample that contains insoluble sulfur (S\(\mu \)) and soluble sulfur (S\(\alpha \)). The sample is solved in n-hexane at a temperature of 40-50°°C, cooled at the room temperature and then filtered in a 25cm\(^3\) measuring fsk. It fills out to 25cm\(^3\) with n-hexane. The absorbance is measured at 263nm. The corresponding sulfur amount is found from etalon curve. The found values are put in the following equation:

\[
S_{\text{soluble}} = \left(0.000154 + 0.38715 \cdot A_{263}\right) \times 100/C_p
\]

(5)

where \(C_p\) is the value extracted from the etalon curve and \(C_{\text{soluble}}\) is the concentration of soluble sulfur from the analyzed sample.

Conclusions

A method for the determination of soluble sulfur from insoluble sulfur has been studied and proposed for the use of sulfur as raw material in rubber industry for fabrication of tires. The base of this method is the molecular UV absorption spectroscopy. The method uses n-hexane as solvent instead of CS\(_2\), which is toxic and very volatile. Thus, the reactive costs are substantially lowered.
The influence of additional oil on the method accuracy is insignificant (accuracy of 95%).

REFERENCES